

Tetrahedron Letters 42 (2001) 975-977

TETRAHEDRON LETTERS

## Massarilactones A and B: novel secondary metabolites from the freshwater aquatic fungus *Massarina tunicata*

Hyuncheol Oh,<sup>a</sup> Dale C. Swenson,<sup>a</sup> James B. Gloer<sup>a,\*</sup> and Carol A. Shearer<sup>b</sup>

<sup>a</sup>Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA <sup>b</sup>Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA

Received 2 November 2000; accepted 7 November 2000

Abstract—Massarilactones A and B (1 and 2) have been isolated from cultures of the freshwater aquatic fungus *Massarina tunicata*. The structures, including absolute stereochemistry, were determined by X-ray diffraction analysis of their bis(4-bro-mobenzoate) derivatives. © 2001 Elsevier Science Ltd. All rights reserved.

Our preliminary studies of freshwater aquatic fungi have led to the isolation of several new bioactive compounds,<sup>1-3</sup> including three sesquiterpenoid metabolites described recently from the aquatic fungus *Massarina tunicata* Shearer & Fallah (A-25-1; = ATCC 201760).<sup>1</sup> Investigations of scale-up cultures of *M. tunicata* have led to the isolation of two new polyketide-derived antibacterial lactones that we have named massarilactones A and B (1–2), both of which contain unusual ring systems. Details of the isolation and structure elucidation of **1** and **2** are presented here. Fractionation of the ethyl acetate extract of *M. tunicata* liquid cultures by chromatography on silica gel, followed by Sephadex LH-20, and/or reversed-phase HPLC, afforded compounds **1** and **2**.<sup>4</sup> The molecular formula of massarilactone A (**1**) was determined to be  $C_{11}H_{14}O_5$  (five unsaturations) on the basis of NMR and HRFABMS data. The <sup>1</sup>H and <sup>13</sup>C NMR data (Table 1) and DEPT results for massarilactone A suggested the presence of an ester group, a -CHCH<sub>3</sub> moiety, an *sp*<sup>3</sup> methylene unit, four oxymethine protons, and an oxygenated 1,1-disubstituted double bond. These data ac-



*Keywords*: fungi; aquatic; antibacterial; natural products; X-ray crystal structure. \* Corresponding author.

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)02160-2



| C# | $^{1}\mathrm{H}^{\mathrm{a}}$ $\delta$ (mult; $J_{\mathrm{H-H}}$ in Hz) | $^{13}\mathrm{C^b}~\delta$ |
|----|-------------------------------------------------------------------------|----------------------------|
| 1  | _                                                                       | 171.7                      |
| 3  | _                                                                       | 156.6                      |
| 4  | 5.69 (br t; 2.1)                                                        | 76.9                       |
| 5  | _                                                                       | 61.5                       |
| 6  | 1.97 (br q; 7.2)                                                        | 46.2                       |
| 7  | 4.22 (m)                                                                | 83.6                       |
| 8  | 2.26 (dd; 16, 3.3)                                                      | 38.6                       |
|    | 1.82 (ddd; 16, 5.7, 1.8)                                                |                            |
| 9  | 4.26 (br dd; 5.4, 5.4)                                                  | 66.4°                      |
| 10 | 4.22 (m)                                                                | 69.6°                      |
| 11 | 4.79 (br t; 2.7)                                                        | 89.7                       |
|    | 4.58 (br dd; 2.7, 2.1)                                                  |                            |
| 12 | 1.15 (d; 7.2)                                                           | 14.3                       |

<sup>a</sup> Recorded at 300 MHz.

<sup>b</sup> Recorded at 75 MHz.

<sup>c</sup> Assignments may be interchanged.

counted for all but two exchangeable protons, and indicted that the structure of massarilactone A (1) is tricyclic.  ${}^{1}H{-}{}^{1}H$  decoupling experiments identified a -CH<sub>2</sub>CHO- subunit, and revealed that the *exo*-methylene signals (H<sub>2</sub>-11) were allylically coupled to the oxymethine proton signal at  $\delta$  5.69 (H-4). Treatment of massarilactone A (1) with acetic anhydride resulted in the formation of a diacetate (3), allowing assignment of both exchangeable protons as secondary alcohol groups. The structure of massarilactone A was assigned as 1 on the basis of detailed NMR analysis and was ultimately confirmed by X-ray diffraction analysis.

The bis(4-bromobenzoate) ester (4) of massarilactone A was prepared by treatment of 1 with 4-bromobenzoyl chloride. Crystals of 4 suitable for analysis by X-ray crystallography were obtained by slow evaporation of an acetone solution. The final X-ray crystallographic model of 4 (Fig. 1)<sup>5</sup> revealed the structure and absolute stereochemistry of massarilactone A, as shown in 1.



| C# | $^{1}\mathrm{H^{a}}~\delta$ (mult, $J_{\mathrm{H-H}}$ in Hz) | <sup>13</sup> C <sup>b</sup> δ | Selective INEPT <sup>a</sup> correlations |
|----|--------------------------------------------------------------|--------------------------------|-------------------------------------------|
| 1  |                                                              | 172.4                          |                                           |
| 3  | 4.81 (q, 6.9)                                                | 74.2                           | 1, 4, 9, 10                               |
| 4  |                                                              | 177.8                          |                                           |
| 6  | 4.67 (br dd, 8.2, 6.6)                                       | 84.3                           | 4, 7, 8, 11, 12                           |
| 7  | 3.80 (dd, 5.1, 6.6)                                          | 71.5                           | 8, 9, 11                                  |
| 8  | 4.49 (br d, 5.1)                                             | 64.2                           | 1, 4, 6, 7, 9                             |
| 9  |                                                              | 100.3                          |                                           |
| 10 | 1.43 (d, 6.9)                                                | 17.1                           | 3, 4                                      |
| 11 | 5.66 (ddq, 15, 8.1,                                          | 124.9                          |                                           |
|    | 1.5)                                                         |                                |                                           |
| 12 | 5.90 (ddq, 15, 6.6,                                          | 133.5                          | 6, 11, 13                                 |
|    | 0.7)                                                         |                                |                                           |
| 13 | 1.73 (dd, 6.6, 1.5)                                          | 17.8                           |                                           |

<sup>a</sup> Recorded at 300 MHz.

<sup>b</sup> Recorded at 75 MHz.

NMR assignments for 1 were made on the basis of chemical shifts, DEPT data, and comparison of its spectral data with those from the known compound spirostaphylotrichin F (5).<sup>6</sup>

Massarilactone B (2)<sup>4</sup> was determined to be an isomer of 1 on the basis of HRFABMS and <sup>13</sup>C NMR data, but these data also suggested the presence of significant structural differences. The <sup>1</sup>H, <sup>13</sup>C, and DEPT NMR data (Table 2) for 2 indicated the presence of two methyl groups, four oxymethine units, a *trans*-disubstituted olefin, and two exchangeable protons. Decoupling experiments permitted the assignment of two isolated spin systems corresponding to an isolated -OCHCH<sub>3</sub> moiety (C3–C10) and a trioxygenated *trans*-2-hexene unit. The chemical shifts of the three remaining, nonprotonated carbons ( $\delta$  177.8, 172.4, 100.3) suggested that they comprise a β-alkoxy-α,β-unsaturated lactone unit.<sup>7</sup> The two exchangeable protons were assigned to hydroxy groups at C-7 and C-8 after analysis of <sup>1</sup>H



Figure 1. Final X-ray model of 4.



Figure 2. Final X-ray model of 7.

NMR data for the diacetate 6 formed by treatment of 2 with acetic anhydride. The remainder of the structure and NMR assignments for 2 were proposed on the basis of selective INEPT data (Table 2). As was the case for 1, X-ray crystallographic analysis<sup>5</sup> of the bis-(4-bromobenzoate) ester of 2 (7; Fig. 2) confirmed the structure of massarilactone B and permitted assignment of its absolute stereochemistry as shown.

To our knowledge, the methanofuro[3,4-b]oxepin ring system found in **1** has not been previously described, although metabolites that contain the similar methanooxepino[2,3-c]pyrrole ring system (e.g. spriostaphylotrichin F; **5**) have been reported from *Staphylotrichum coccosporum*.<sup>6</sup> Similarly, it appears that no natural products having the furo[3,4-b]pyran ring system found in massarilactone B (**2**) have been previously reported. However, larger ring systems incorporating such a system are known, and a synthetic intermediate possessing this ring system has been prepared.<sup>8</sup>

Massarilactones A and B both appear to be derived from the same type of polyketide precursor, with addition of a three-carbon unit accounting for carbons 3, 4, and 11. These compounds bear close biogenetic resemblance to several other fungal metabolites, including rosigenin, the curvupallides, and the spirostaphylotrichins.<sup>9–11</sup> Biosynthetic studies of members of this class (e.g. **5**) have suggested that they are formed by condensation of a polyketide chain with an unidentified  $C_4$  unit, most likely either an amino acid (e.g. aspartic acid) or a citric acid cycle intermediate.<sup>10,11</sup>

Massarilactones A (1) and B (2) exhibited antibacterial activity against *Bacillus subtilis* (ATCC 6051) in standard disk assays, affording zones of inhibition of 19 and 16 mm, respectively, at 200 µg/disk. Massarilactone B was also active against *Staphylococcus aureus* (ATCC 29213) at the same level, causing a zone of inhibition of 12 mm. Neither compound showed activity in assays against *Aspergillus flavus* (NRRL 6541), *Fusarium verticillioides* (ATCC 24378), or *Candida albicans* (ATCC 14053) at 200 µg/disk.

## Acknowledgements

We thank Victor G. Young, Jr. and the X-ray Crystallographic Laboratory of the Chemistry Department at the University of Minnesota for providing the X-ray crystallographic data for compound 7. Support for this project from the National Institutes of Health (GM 60600) is gratefully acknowledged.

## References

- 1. Oh, H.; Shearer, C. A.; Gloer, J. B. J. Nat. Prod. 1999, 62, 497–501.
- Harrigan, G. G.; Armentrout, B. L.; Shearer, C. A.; Gloer, J. B. J. Nat. Prod. 1995, 58, 1467–1469.
- Xu, X.; DeGuzman, F. S.; Shearer, C. A.; Gloer, J. B. J. Org. Chem. 1992, 57, 6700–6703.
- 4. Massarilactone A (1): 34 mg obtained from 8 L of fermentation broth;  $[\alpha]_D + 8.7^{\circ}C$  (*c* 0.3 g/dL; 24°C; CH<sub>2</sub>Cl<sub>2</sub>); UV (CH<sub>3</sub>OH) 210 ( $\varepsilon$  2200); <sup>1</sup>H and <sup>13</sup>C NMR data, Table 1; HRFABMS (NaI/3-NBA) obsd *m/z* 249.0720, calcd for C<sub>11</sub>H<sub>14</sub>O<sub>5</sub>+Na, 249.0739. Massarilactone B (2): 70 mg from 8 L of broth;  $[\alpha]_D -109^{\circ}$  (*c* 2.2 g/dL; 28°C; CH<sub>3</sub>OH); UV (CH<sub>3</sub>OH) 236 ( $\varepsilon$  9000), 270 ( $\varepsilon$  6300); <sup>1</sup>H, <sup>13</sup>C, and selective INEPT NMR data, Table 2; HRFABMS (LiI/glycerol) obsd *m/z* 227.0912, calcd for C<sub>11</sub>H<sub>14</sub>O<sub>5</sub>+H, 227.0919.
- 5. X-Ray data for 4 were collected on an Enraf-Nonius CAD4 diffractometer (Mo K $\alpha$  radiation) using  $\theta$ -2 $\theta$ scans. The structure was solved using a MULTAN direct methods program, and refined using full-matrix leastsquares. Crystals of 4 (0.42×0.20×0.08 mm) were monoclinic (space group  $P2_1$ ) with cell dimensions a=9.443(3), b = 17.089(5), c = 7.552(3) Å. The 7822 measurements vielded 4147 independent reflections (309 parameters) after equivalent data were averaged and Lorenz and polarization corrections were applied. The final refinement gave  $R_1 = 0.0561$ ,  $wR_2 = 0.0878$ . X-Ray analysis of compound 7 was performed at the University of Minnesota using a Siemens SMART system at 173(2) K. Crystals of 7 (0.45×0.19×0.045 mm) were also monoclinic (space group  $P2_1$ ) with cell dimensions a = 7.69990(10), b = 28.0555(3), c = 11.6064(2) Å. The specimen was determined to be a rotational twin with the twin law (transposed, by rows) [1, 0, -1/7; 0, -1; 0, 0, -1]. The 8489 measurements yielded 8489 independent reflections (619 parameters). The final refinement gave  $R_1 = 0.0914$  and  $wR_2 = 0.2088$ . Atomic coordinates for both compounds have been deposited at the Cambridge Crystallographic Data Centre.
- 6. Sandmeier, P.; Tamm, C. Helv. Chim. Acta 1989, 72, 784–792.
- Sohár, P. Nuclear Magnetic Resonance Spectroscopy; CRC Press: Boca Raton, Florida, 1983; Vol. I, pp. 67–68 and references cited therein.
- Paquette, L. A.; Sivik, M. R. Synth. Commun. 1991, 21, 467–479.
- Renaud, J.-M.; Tsoupras, G.; Tabacchi, R. Helv. Chim. Acta 1989, 72, 929–932.
- 10. Ayer, W. A.; Craw, P. A. J. Can. J. Chem. 1992, 70, 1348–1355.
- 11. Sandmeier, P.; Tamm, C. Helv. Chim. Acta 1989, 72, 774–783.